Closing next wed: HW_2A,2B,2C Office Hours: 1:30-3:00pm in Com.B-006

Quick review:
Def'n: The "signed" area between $f(x)$

Entry Task: Evaluate 4 $e^{x}+\sqrt{x^{3}} d x$ and the x-axis from $x=a$ to $x=b$ is the definite integral:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$
FTOC(1): Areas are antiderivatives!

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

$$
\int_{3}^{6} \frac{4}{x}-\frac{2}{x^{2}} d x
$$

FTOC(2): If $\mathrm{F}(\mathrm{x})$ is any antideriv. of $f(x)$,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

5.4 The Indefinite Integral and
 Net/Total Change

Def' n : The indefinite integral of $f(x)$ is defined to be the general antiderivative of $f(x)$. And we write

$$
\int f(x) d x=F(x)+C
$$

where $F(x)$ is any antiderivative of $f(x)$.

A brief pause to discuss current integration methods. We can currently find antiderivatives for sums and constant multiples of functions directly from our integration table.

Examples (we can currently do):

1. $\int 6 e^{x}+4 x-5 \sqrt{x} d x$
2. $\int 6 \sec ^{2}(\mathrm{x})-\frac{9}{x^{4}} d x$

Examples we cannot currently do (but will be able to do later in the term):

$$
\int x e^{3 x} d x ; \quad \int \tan (x) d x
$$

Here are two that look bad but we can currently do them, why?

$$
\int x \sin \left(x^{2}\right) d x ; \quad \int \frac{x^{2}-x+6}{x^{3}+3 x} d x
$$

1. $\int \frac{\sqrt{\mathrm{x}}-3 \mathrm{x}}{\mathrm{x}} d x$

$$
\int \frac{3}{x-2 \sqrt{x}} d x ; \quad \int \frac{\sqrt{x^{2}-1}}{x^{2}} d x
$$

2. $\int \frac{\cos (x)}{1-\cos ^{2}(\mathrm{x})} d x$

Examples we will "never" be able to do:

$$
\int \mathrm{e}^{\mathrm{x}^{2}} d x ; \int \sec \left(x^{2}\right) d x
$$

What is the value of:

$$
\int_{\pi / 4}^{\pi / 2} \frac{\cos (x)}{1-\cos ^{2}(x)} d x
$$

Net Change and Total Change

Assume an object is moving along a straight line (up/down or left/right). Let
$s(t)=$ 'location at time t^{\prime}
$v(t)=$ 'velocity at time t^{\prime}
pos. $v(t)$ means moving up/right neg. $v(t)$ means moving down/left
The FTOC (part 2) says

$$
\int_{a}^{b} v(t) d t=s(b)-s(a)
$$

i.e.
'integral of velocity'= 'net change in dist'
We also call this the displacement.

Thus, in general, the FTOC(2) says the net change in $f(x)$ from $x=a$ to $x=b$ is the integral of its rate. That is:

$$
\int_{a}^{b} f^{\prime}(t) d t=f(b)-f(a)
$$

We define total change in dist. by $\int_{a}^{b}|v(t)| d t$
which we compute by

1. Solving $v(t)=0$ for t.
2. Splitting up the integral at these t values, dropping the absolute value and integrating separately.
3. Adding together as positive numbers.
